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Our structural analysis of an aluminum-backed curtain wall
system informs blast-resistant structural design practice

Analysis focuses on the expected material
response of an aluminum curtain wall support

Blast loadings are typical of U.S. government
criteria for domestic projects

Dynamic experiment test results of aluminum
samples coupled to a three-dimensional finite
element hydrocode account for: over-strength,
dynamic strengthening, and post-failure
response of aluminum

Federal Courthouse

The additional fidelity of our material representation eliminates the
need to upgrade the structural member




The minimum construction requirements for curtain
wall do not allow meaningful increase factors

e Guidance for the design of facade systems governed by the
“Authority Having Jurisdiction” per ASCE’s “Blast Protection of
Buildings” ASCE/SEI 59-11 (USACE for GSA and DoD)

PDC-TR 06-01 Rev 2

============
US Army Corps
of Engineers ®

Table 6-2: PDC-TR 06-01. Single Degree of Freedom Blast Design
Spreadsheets. USACE PDC Technical Report. 05 October 2006.

Methodology Manual for the Single-Degree-of-
Freedom Blast Effects Design Spreadsheets

Strength Dynamic = ‘
Type of Yield Strength Increase Increase : -
Aluminum [MPa] Factor (SIF) Factor (DIF) L
6061-T6 241 (35 ksi) 1.07 1.02
6063-T5 110 (16 ksi) 1.16 1.02
6063-T6 172 (25 ksi) 1.12 1.02

We believe these requirements are too conservative.
They result in systems with residual capacity (over what is required for
the level of protection) and increased construction costs.




The literature confirms that the Strength Increase
Factor (SIF) for Aluminum 6063-T6 is low

strength (aluminum alloy 6063-T6) of 6,=25 ksi with

Aluminum Design Manual provides allowable yield @
Equivalent Plastic Strain (EPS) at failure 0.057 (5.7%). .
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HﬂlldbﬂﬂkQ!S Analysis handbooks provide yield strengths

aeamEs of aluminum 6063-T6 alloy ~30-31 ksi.
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Literature review shows yield strength of 30.1-30.3 ksi and
fracture strains are 0.0945-0.1149 (9.4-11.5%).

These higher yield strengths support an increase in
the SIF from 1.12to 1.2




Dynamic aluminum test data shows the strain-rate
dependence of aluminum and supports higher DIFs

Stress

Red solid lines are
constitutive models:
e Steinberg-Guinan
e Johnson-Cook

Green open circles are
experimental data for a range of
strain-rates:
e 1e-9 ust(0.001s?) to0.0048
us? (4800 s?)
e UFC 3-340-02 provides 0.1-0.3
s1(~107 us?) for flexural
o o0% 085 o055 o1 A% oM o5 02 oas 0 members
s e Our study showed 4 s1to 76 s’

Higher yield strengths at faster loading support an increase
in the Dynamic Increase Factor (DIF) from 1.02 to 1.12




Analysis of a long-span aluminum curtain wall system was
performed to quantify the effects of material strength increases

Aluminum-backed curtain wall
system:

e 10”x3”x3/8” aluminum
mullion extruded from 6063-

Wi TYPICAL
T 1w |+ MULLION

T6 aluminum — Eas.

e typical glass pane hasa 9.75’ I
tributary width, 25.5’ span D\
e fix-pin end conditions i
. . . 2 Wi T~ LARGEST
e Insulating Glazing Unit (IGU) PANE
with inner-pane lay-up of ‘

heat strengthened glass with
inter-PVB layer

e Both High Load and Low Load
for blast boundary condition
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This system has a span longer than is typical.




Results from Single Degree of Freedom (SDOF)
analysis show that mullion performance is marginal

Passes under the Low Load Fails under the High Load
(Design Load) and criteria (Balanced Load) and criteria
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Finite Element Analysis (FEA) shows that the yield strength is
exceeded, but there is little plasticity.
The mullion is not expected to fail.
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]
Equivalent Peak Strain
Plastic Strain* Rate Deflection
[%] [s1] [in] Ductility Rotation

0.3 4.3 7.5 1.5 3.8°
High Load 0.4 75.7 15.6 3.2 7.7°

* Dynamic fracture strain: 9.4-11.5%



Recommend unlocking residual capacity by raising the SIF to
1.2 and the DIF to 1.12 for a yield strength of up to 34% higher
than the prescribed design strength
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This study can be applied to any material with dynamic test data!




Questions?
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